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Abstract —Numerical simulation of heat transfer between an earth-sheltered cavity and the soil: two-dimensional transfer
functions method and subdivision. This paper describes the use of the two-dimensional transfer functions method for predicting
the heat transfer between an earth-sheltered cavity and the surrounding ground. This method is first, applied for the generation of
the transfer function coefficients for the system formed by the whole “earth-sheltered cavity–soil”. Then, the latter is decomposed
into different layers. Each layer is characterised by its inputs and outputs and by its appropriate transfer functions coefficients. This
technique allows a significant reduction in the computation time required to generate the transfer function coefficients of the cavity
coupled to the soil. These methods are tested by comparing their results with those of the alternative directions implicit method
(ADI) for various situations. The influence of parameters that have large effects on heat transfer such as the cavity depth, the thermal
insulation, the nature and the thickness of the cavity walls are studied in typical climates.  1999 Éditions scientifiques et médicales
Elsevier SAS
simulation / earth-sheltered cavity / soil / thermal coupling / transfer functions / multi-layers transfer functions / ADI /
thermal building

Résumé —Dans cette étude, la méthode des fonctions de transfert bidimensionnelles est adaptée pour le calcul des échanges de
chaleur entre les cavités complètement enterrées et le sol. Cette méthode est exploitée de deux manières différentes. D’abord, elle
est utilisée pour la génération des coefficients de la fonction de transfert du système formé par l’ensemble «cavité enterrée–sol ».
Ensuite, elle est adaptée au cas où le système est constitué par un empilement de sous-systèmes caractérisés chacun par ses entrées,
ses sorties et ses coefficients de la fonction de transfert. Cette procédure permet de réduire considérablement le temps de calcul
nécessaire pour la génération des coefficients de la fonction de transfert du système étudié. La validation de ces méthodes est obtenue
par la comparaison de leurs résultats à ceux de la méthode implicite aux directions alternées (ADI), et ce pour différentes situations.
Les effets de la profondeur de la cavité, de l’isolation, de la nature et des épaisseurs de ses parois sur le transfert de chaleur sont
étudiés dans deux climats typiques.  1999 Éditions scientifiques et médicales Elsevier SAS

simulation / cavité enterrée / sol / couplage thermique / fonctions de transfert / fonctions de transfert multicouches / ADI /
thermique du bâtiment

Nomenclature

a demi-largeur du plafond et du plancher . m
A matrice d’état
b profondeur du plafond . . . . . . . . . . m
B matrice de commande
c profondeur du plancher . . . . . . . . . m
C matrice d’observation
d profondeur de la nappe phréatique . . . m
D matrice

* Correspondance et tirés à part.
abdelbaki@ucam.ac.ma

ej coefficient de la fonction de transfert
em épaisseur du mur . . . . . . . . . . . . . m
ep épaisseur du plancher . . . . . . . . . . m
et épaisseur du plafond . . . . . . . . . . . m

h coefficient d’échange global . . . . . . . W·m−2·K−1

Hm hauteur du mur . . . . . . . . . . . . . . m
L demi-largeur de la région du sol perturbée m
m nombre d’entrées
n nombre de nœuds
p nombre de sorties
S coefficient de la fonction de transfert
T température . . . . . . . . . . . . . . . . ◦C
U entrée . . . . . . . . . . . . . . . . . . . ◦C
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Symboles grecs

α diffusivité thermique . . . . . . . . . . . m2·s−1

λ conductivité thermique . . . . . . . . . . W·m−1·K−1

∆ pas de temps . . . . . . . . . . . . . . . s
φ flux de chaleur par unité de longueur . . W·m−1

Indices

i intérieur
m mur
p plancher
s sol
t toit
w nappe phréatique

Sigles

ADI méthode implicite aux directions al-
ternées

FT méthode des fonctions de transfert
FTM méthode des fonctions de transfert mul-

ticouches

1. INTRODUCTION

L’estimation des échanges de chaleur entre les struc-
tures enterrées et le sol a fait l’objet de nombreuses
études. La plupart de ces études sont basées sur des tech-
niques aux différences finies ou aux éléments finis [1–3],
qui, à cause de la forte inertie thermique du sol, condui-
sent à des systèmes d’équations algébriques d’ordres
élevés, qui doivent être résolus à chaque itération, ce qui
nécessite un temps de calcul prohibitif. Pour pallier cet
inconvénient, certains auteurs [4–8] ont utilisé ces mé-
thodes pour établir des corrélations dont la validité reste
limitée aux configurations qu’ils ont traitées. À cause
de la complexité du modèle mathématique, les solutions
analytiques disponibles sont peu nombreuses. La plus
connue de ces solutions est celle du profil de tempéra-
ture interzone (ITPE) introduite par Krarti et al. [9]. Mais
ces solutions sont valables uniquement pour des configu-
rations simples, qui ne tiennent pas compte de la masse
thermique des parois de la cellule [9] ou de l’existence
d’une nappe phréatique [10]. Les solutions analytiques
de Delsante et al. [11] et de Lachenbruch [12] ne sont va-
lables que pour des planchers sur terre-plein. Il en est de
même pour la méthode du profil de température superfi-
cielle du sol, développée par Achard et al. [13].

Pour contourner ces restrictions, Abdelbaki [14] et
Abdelbaki et Zrikem [15] ont utilisé la méthode des
fonctions de transfert bidimensionnelles basée sur l’al-
gorithme de Seem [16] pour le calcul des transferts de
chaleur à travers des planchers sur terre-plein. Les ré-

sultats de cette méthode sont en bon accord avec ceux
obtenus numériquement par la méthode des différences
finies, sous sa forme implicite ou analytiquement, en ap-
pliquant la technique ITPE étendue au cas d’un plancher
massif [14]. Le problème des transferts conductifs entre
un plancher sur terre-plein et le sol a été aussi étudié par
Mokhtari [17] en utilisant la méthode de l’analyse mo-
dale. Dans ses travaux, qui ont porté sur l’application des
méthodes de réduction aux singularités thermiques dans
les bâtiments, El Biyaali [18] a proposé de résoudre le
problème en approximant le système «plancher sur terre-
plein + sol » par des modèles d’état de dimensions ré-
duites, et ce après avoir exposé différentes techniques de
réduction.

Dans ce travail, on se propose d’adapter la méthode
des fonctions de transfert bidimensionnelles au calcul des
échanges de chaleur entre une cavité enterrée et le sol.
Pour les domaines de calcul très larges, une technique
efficace, qui permet un gain appréciable en temps de cal-
cul, est proposée. Cette technique, qu’on appelle « mé-
thode des fonctions de transfert multicouches », consiste
à découper le système « cavité–sol » en plusieurs couches
et de générer séparément les coefficients de la fonction
de transfert pour chacune des couches. Pour confirmer
la validation de ces méthodes, ainsi que celle des pro-
grammes de calcul développés, la configuration « cavité–
sol » considérée est traitée par la méthode des diffé-
rences finies ADI. Les résultats des trois procédures sont
confrontés dans deux climats typiques et pour différentes
valeurs des paramètres influant sur le transfert thermique
entre la cavité et le sol. Les effets de ces paramètres sont
également étudiés.

2. MODÈLE MATHÉMATIQUE

La configuration bidimensionnelle étudiée est repré-
sentée sur lafigure 1. Il s’agit d’une cavité enterrée ayant
un plafond d’épaisseuret situé à une profondeurb au-
dessous de la surface du sol, un plancher bas d’épaisseur
ep, de largeur 2a, à la profondeurc, et un mur de hauteur
Hm et d’épaisseurem. À la profondeurd au-dessous de la
surface du sol, on suppose l’existence d’une nappe phréa-
tique à la températureTw. La distance qui délimite la ré-
gion du sol perturbée par le local est comprise entre−L
etL. La température superficielle du sol estT1(t) et celle
de l’air intérieur du local estTi(t). Les échanges de cha-
leur entre les surfaces du plancher, du mur et du toit d’une
part et l’intérieur du local d’autre part sont exprimés res-
pectivement à l’aide des coefficients d’échanges globaux
hp, hm etht.
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Figure 1. Configuration étudiée.
Figure 1. The studied configuration.

En tenant compte de la symétrie du problème, on
ne considère que la moitié du domaine. L’équation
gouvernant la conduction dans le toit, le plancher, le mur
et le sol est donnée par :

∂2Tk

∂x2 (x, y, t)+
∂2Tk

∂y2 (x, y, t)=
1

αk

∂Tk

∂t
(x, y, t) (1)

où αk est la diffusivité thermique du milieu considéré.
Les conditions aux limites du problème sont :

Ts(x,0, t)= T1(t) et Ts(x, d, t)= Tw

pour −L≤ x ≤ 0

λt
∂Tt

∂y
(x, y, t)

∣∣∣∣
y=b+et

= ht
(
Tt(x, b+ et, t)− Ti(t)

)
pour−a ≤ x ≤ 0

λm
∂Tm

∂x
(x, y, t)

∣∣∣∣
x=−a

= hm
(
Tm(−a, y, t)− Ti(t)

)
pourb+ et ≤ y ≤ c

λp
∂Tp

∂y
(x, y, t)

∣∣∣∣
y=c
= hp

(
Tp(x, c, t)− Ti(t)

)
pour−a ≤ x ≤ 0

Tt(x, b, t)= Ts(x, b, t) et Tp(x, c+ ep, t)

= Ts(x, c+ ep, t)

pour−(a + em)≤ x ≤ 0

Tt
(−(a + em), y, t

)= Ts
(−(a + em), y, t

)
pourb ≤ y ≤ b+ et

Tp
(−(a + em), y, t

)= Ts
(−(a + em), y, t

)
pourc ≤ y ≤ c+ ep

Tm
(−(a + em), y, t

)= Ts
(−(a + em), y, t

)
pourb+ et ≤ y ≤ c

∂Ts

∂x
(x, y, t)

∣∣∣∣
x=−L

= 0 pour 0≤ y ≤ d
∂Tk

∂x
(x, y, t)

∣∣∣∣
x=0
= 0

pour 0≤ y ≤ b+ et et c ≤ y ≤ d
λm
∂Tm

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

= λs
∂Ts

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

pourb+ et ≤ y ≤ c
λt
∂Tt

∂y
(x, y, t)

∣∣∣∣
y=b
= λs

∂Ts

∂y
(x, y, t)

∣∣∣∣
y=b

pour−(a + em)≤ x ≤ 0

λt
∂Tt

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

= λs
∂Ts

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

pourb ≤ y ≤ b+ et

λp
∂Tp

∂y
(x, y, t)

∣∣∣∣
y=c+ep

= λs
∂Ts

∂y
(x, y, t)

∣∣∣∣
y=c+ep

pour−(a + em)≤ x ≤ 0

λp
∂Tp

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

= λs
∂Ts

∂x
(x, y, t)

∣∣∣∣
x=−(a+em)

pourc ≤ y ≤ c+ ep

oùλp, λm, λt etλs sont respectivement les conductivités
thermiques du plancher, du mur, du toit et du sol.

3. MÉTHODES DE RÉSOLUTION

3.1. Méthode des fonctions de transfert
bidimensionnelles (FT)

Le système « bâtiment enterré–sol » étudié est repré-
senté dans l’espace d’état par les relations matricielles
suivantes : 

d[T ]
dt
= [A][T ] + [B][U ]

[ϕ] = [C][T ] + [D][U]
(2)

où [T ] est le vecteur d’état, dont les composantes sont
les températures aux différents nœuds de la discrétisation
spatiale. Le vecteur[U ] représente les entrées du système
(où excitations thermiques), qui sont la température
superficielle du solT1(t) discrétisée, celle de la nappe
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phréatique(Tw) et la température des nœuds situés sur
les surfaces des différentes parois du bâtiment (mur, toit
et plancher). Les densités du flux de chaleur en ces nœuds
sont les sorties du système (composantes du vecteur[ϕ]).
[A], [B], [C] et [D] sont des matrices à coefficients
constants et sont utilisées dans l’algorithme de Seem [16]
pour le calcul des coefficients de la fonction de transfert
du système étudié.

Dans le domaine de Laplace, la solution de l’équation
d’entrée du système (2) s’écrit :

[T ]t+∆= [Φ][T ]t +
([G1] − [G2]

)[U ]t
+[G2][U ]t+∆ (3)

avec :

[Φ] = e[A]∆

[G1] = [A]−1([Φ] − [I ])[B]
[G2] = [A]−1

( [G1]
∆
− [B]

)
Par suite, la transformée de Laplace de l’équation de

sortie du système 2 peut s’écrire sous la forme suivante :

[ϕ]t =
{ [C]([F ][I ] − [Φ])−1([F ][G2] + [G1] − [G2]

)
+[D]}[U ]t (4)

où [F ] est l’opérateur de transition défini par :

[T ]t+∆ = [F ][T ]t
L’inverse de la matrice([F ][I ]−[Φ])−1 est obtenu en

utilisant l’algorithme de Leverrier [19]([F ][I ] − [Φ])−1=
[R0][F ]n−1+ [R1][F ]n−2+ · · · + [Rn−2][F ] + [Rn−1]

[F ]n + e1[F ]n−1+ · · · + en
(5)

avec :

[R0] = [I ], e1=−Trace
([Φ][R0]

)
[R1] = [Φ][R0] + e1[I ], e2=−Trace([Φ][R1])

2

[R2] = [Φ][R1] + e2[I ], e3=−Trace([Φ][R2])
3

...
...

[Rn−1] = [Φ][Rn−2]
+ en−1[I ], en =−Trace([Φ][Rn−1])

n

En substituant l’équation (5) dans l’équation (4) et après
mise en facteur, les sorties du système à l’instantt

peuvent s’écrire sous la forme condensée suivante :

[ϕ]t =
n∑
j=0

[Sj ][U ]t−j∆ −
n∑
j=1

ej [ϕ]t−j∆ (6)

avec :

[S0] = [C][R0][G2] + [D]
[Sj ] = [C]

{[Rj−1]
([G1] − [G2]

)+ [Rj ][G2]
}+ ej [D]

pour 1≤ j ≤ n− 1

[Sn] = [C][Rn−1]
([G1] − [G2]

)+ en[D]
C’est une équation qui lie la sortie à l’instantt à l’entrée
au même instant et aux entrées et sorties aux instants
précédents. Les constantes scalairesej et les matrices
à coefficients constants[Sj ] sont les coefficients de la
fonction de transfert du système, qui caractérisent son
comportement en régime dynamique.

La composante d’ordrek (1≤ k ≤ p) est donnée par :

ϕk(t)=
n∑
j=0

m∑
i=1

S
j
k,iUi(t− j∆)−

n∑
j=1

ejϕk(t− j∆) (7)

où∆ est la cadence d’échantillonnage etm etp représen-
tent respectivement les nombres d’entrées et de sorties du
système.

3.2. Méthode des fonctions de transfert
multicouches (FTM)

Cette technique a été développée pour l’évaluation des
échanges de chaleur à travers des systèmes « bâtiment–
sol » de domaine de calcul large. En effet, le nombre de
nœuds choisis dans la discrétisation spatiale croît avec les
dimensions du système traité, ce qui complique le calcul
de l’exponentielle d’une matrice lors de la génération des
coefficients de la fonction de transfert de ce système.

La figure 2montre que le système « bâtiment enterré–
sol » est découpé enNc couches, dont les propriétés ther-
mophysiques peuvent être différentes. Chaque couchen

représente un sous-système, caractérisé par ses entrées,
ses sorties et ses coefficients de la fonction de transfert.
Ceux-ci sont générés séparément en utilisant l’algorithme
de Seem [16]. Les entrées et les sorties de chaque sous-
système sont respectivement les températures et les den-
sités du flux aux différents nœuds situés sur ses faces
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Figure 2. Décomposition du système «bâtiment enterré–sol »
en plusieurs couches.
Figure 2. Decomposition of the system “earth-sheltered
building–soil” into different layers.

inférieure et supérieure. Ainsi, la densité du flux de cha-
leur au nœudk s’exprime par :

ϕnk (t)=
Nn∑
j=0

mn∑
i=1

S
j,n

k,i U
n
i (t − j∆)−

Nn∑
j=1

enj ϕ
n
k (t − j∆)

(8)
oùSj,nk,i est le coefficient de la fonction de transfert (CFT)
correspondant à la couchen, à la sortiek, à l’entréei et
au pas de tempst − j∆. enj est le CFT correspondant à la
couchen et au pas de tempst − j∆.

La continuité de la température et du flux de chaleur
au nœudk (exprimé par l’équation (8)) situé à l’interface
entre deux couches adjacentesn et n − 1 (2≤ n ≤ q et
q + 1≤ n≤Nc) (figure 2) s’exprime par :{
Unk =Un−1

k+1 et ϕnk (t)= ϕn−1
k (t) si n= 2

Unk =Un−1
NX+k et ϕnk (t)= ϕn−1

NX+k(t) si n > 2
(9)

et

U
q
NXq+k =U

q+1
k et ϕ

q
NXq+k(t)= ϕ

q+1
k (t) (10)

Si le nœudk est situé à la surface du plancher, du mur
ou du toit, les densités du flux de chaleur sont données

respectivement par :

ϕ
q−1
NX+NXq+k(t)= hp

(
Ti(t)−Uq−1

NX+NXq+k(t)
)

1≤ k ≤NX3

ϕ
q

2NXq+k(t)= hm
(
Ti(t)−Uq2NXq+k(t)

)
1≤ k ≤NYq

ϕ
q+1
NXq+k(t)= ht

(
Ti(t)−Uq+1

NXq+k(t)
)

1≤ k ≤NX3

(11)

où NX3 et NYq sont les nombres de nœuds situés
respectivement sur les surfaces du plancher (ou du toit)
et du mur.NXq est le nombre total de nœuds selon la
directionx de la coucheq .

Les équations (9) à (11) conduisent à un système d’é-
quations algébriques dont les inconnues sont les tempéra-
tures des différents nœuds situés aux interfaces des diffé-
rentes couches adjacentes et sur les surfaces du plancher,
du mur et du toit. Ce système est résolu en utilisant la
méthode itérative de Gauss–Seidel.

4. RÉSULTATS

Les résultats présentés ici sont obtenus pour deux
types de climats : un climat chaud, caractérisé parT1(t)=
20+ 7 cosωt (◦C), oùω est la fréquence angulaire du
cycle annuel,ω = 1,992·10−7 rad·s−1, Tw = 20 ◦C et
d = 13 m, et un climat froid, caractérisé parT1(t) = 8
+7 cosωt (◦C), Tw = 10 ◦C et d = 6 m. Pour les
deux types de climats, la température intérieure du
bâtimentTi(t) est prise égale à 20◦C et ses propriétés
géométriques sont :a = 3 m,b = 0,6 m,c= 4 m,Hm=
3 m, ep = em = et = 0,4 m etL = 9 m. Le coefficient
d’échange globalh est pris égal à 8,30 W·m−2·K−1 si
les parois du bâtiment sont dépourvues d’isolant [20] et
à 0,41 W·m−2·K−1 si elles sont isolées par une couche
de polystyrène d’épaisseur 7,5 cm et de conductivité
thermiqueλi = 0,032 W·m−1·K−1. La conductivité et la
diffusivité thermiques du sol sontλs= 1 W·m−1·K−1 et
αs= 6,45·10−7 m2·s−1.

Afin de réaliser un compromis entre le temps de calcul
et la précision, une étude d’optimisation a été faite sur
l’influence des pas d’espace et de temps utilisés dans
la simulation. Ainsi, pour la méthode des fonctions de
transfert, cette étude a conduit au choix d’un pas de temps
∆ = 864 000 s et d’un pas d’espace variant de 0,05 à
1 m, ce qui correspond à un maillage de 17× 8 nœuds
lorsque la méthode de sous-structuration est utilisée et de
17×22 nœuds dans le cas contraire. En revanche, pour la
méthode ADI, le pas de temps utilisé est de 86 400 s et le
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pas d’espace varie entre 0,025 et 1 m, ce qui correspond à
des maillages de 39×47 pour le climat froid et de 39×51
pour le climat chaud.

4.1. Validation de la méthode des
fonctions de transfert

Pourλt = λm = λp = λ = 1 W·m−1·K−1, la figure 3
représente les variations annuelles du flux moyen men-
suel perdu par une cellule non isolée (figure 3a) ou
fortement isolée (figure 3b). Ces flux sont calculés par
les méthodes FT et ADI et par la technique des fonc-
tions de transfert multicouches FTM (technique de sous-
structuration) en subdivisant le système en 3 couches
(d’épaisseursb1 = 1 m, b2 = 3 m et b3 = 2 m) ou en
4 couches (d’épaisseursb1 = 0,6 m, b2 = 0,4 m, b3 =
3 m etb4 = 2 m). On peut constater qu’il y a une très
bonne concordance entre les résultats issus des 3 mé-

Figure 3. Comparaison des flux moyens mensuels calculés
en climat froid par les méthodes FT, FTM et ADI. a. h =
8,30 W·m−2·K−1. b. h= 0,41 W·m−2·K−1.
Figure 3. Comparison of the total heat flux computed in a cold
climate by FT, FTM and ADI methods. a. h = 8.30 W·m−2·K−1.
b. h= 0.41 W·m−2·K−1.

thodes. En effet, l’écart relatif entre les différents résul-
tats ne dépasse pas 2 %.

La figure 4représente les variations annuelles du flux
moyen mensuel échangé entre une cavité enterrée et le
sol pourλ = 1 W·m−1·K−1 et α = 6,45·10−7 m2·s−1

en climat chaud. Ces flux sont calculés par la méthode
FTM, en subdivisant le système « bâtiment enterré–sol »
en 3 couches (d’épaisseursb1 = 1 m, b2 = 3 m et
b3 = 9 m) et en 5 couches (d’épaisseursb1 = 0,6 m,
b2 = 0,4 m, b3= 3 m, b4 = 4 m etb5 = 5 m) pourh =
8,30 W·m−2·K−1 (figure 4a) et h = 0,41 W·m−2·K−1

(figure 4b). Cette figure montre que les flux obtenus
par la méthode des fonctions de transfert multicouches
en utilisant les deux décompositions sont en excellent
accord avec ceux obtenus par la méthode ADI.

Pour λ = 1 W·m−1·K−1 et h = 8,30 W·m−2·K−1,
la figure 5 représente les répartitions de température en
fonction de la distancex en y = 1 m ety = 4 m ; la fi-
gure 6représente les répartitions de température en fonc-

Figure 4. Comparaison des flux moyens mensuels calculés
en climat chaud par les méthodes FTM et ADI. a. h =
8,30 W·m−2·K−1. b. h= 0,41 W·m−2·K−1.
Figure 4. Comparison of the total heat flux computed in a
hot climate by FTM and ADI methods. a. h = 8.30 W·m−2·K−1.
b. h= 0.41 W·m−2·K−1.
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Figure 5. Profils de température aux différents niveaux. a. Cli-
mat froid (15 janvier). b. Climat chaud (15 juillet).
Figure 5. Temperature distributions at various depth below-
grade. a. Cold climate (15 January). b. Hot climate (15 July).

tion de la distancey en x = −3,4 m. Ces profils de
température sont obtenus pour 2 jours caractéristiques :
le 15 janvier du climat froid quand la température super-
ficielle du solT1(t) est minimale et le 15 juillet du climat
chaud quandT1(t) est maximale. On constate que les ré-
sultats obtenus par la méthode des fonctions de transfert
multicouches et ceux de la méthode ADI sont en bonne
concordance. En effet, la différence relative maximale
entre les températures prédites par les deux méthodes est
inférieure à 1 %. Les profils de température montrent que,
pour les deux climats, le transfert de chaleur est important
au voisinage du bâtiment, présente un caractère bidimen-
sionnel et décroît quand la distancex et/ouy croît. La
figure 6montre qu’en s’éloignant de la cellule, la tempé-
rature devient constante dans le climat chaud et décroît
linéairement avec la profondeur dans le cas du climat
froid.

L’utilisation de la méthode ADI fait appel au calcul,
à chaque pas de temps, de la distribution de température
aux différents nœuds obtenus par discrétisation spatiale
du système, ce qui n’est pas le cas pour la méthode des
fonctions de transfert, qui permet le calcul de la réponse

Figure 6. Profils de température en x =−3,4 m. a. Climat froid.
b. Climat chaud.
Figure 6. Temperature distributions at x = −3.4 m. a. Cold
climate. b. Hot climate.

du système à des sollicitations thermiques données par un
simple produit de convolution faisant intervenir les coef-
ficients de la fonction de transfert. Ainsi, on ne peut com-
parer exactement les temps de calcul demandés par les
deux méthodes. En effet, pour la méthode des fonctions
de transfert, l’étape consacrée à la génération des coeffi-
cients nécessite un temps de calcul nettement supérieur à
celui de la méthode ADI ; mais elle est faite une fois pour
toutes et indépendamment des sollicitations thermiques
appliquées au système. Une fois les coefficients de la
fonction de transfert générés, le calcul du flux de chaleur
à partir de l’équation (6) est immédiat. À titre indicatif, le
temps nécessaire pour estimer par la méthode ADI la va-
riation annuelle du flux moyen mensuel échangé entre le
bâtiment et le sol dans le cas du climat froid est de 37,7 s.
En revanche, la simulation du même cas, utilisant les co-
efficients de la fonction de transfert générés, ne demande
que 1,7 s si le système est considéré en entier et 7 s si
ce dernier est subdivisé en 3 couches par la technique
de sous-structuration. Quant à la génération de ces coef-
ficients, elle nécessite un temps de calcul de 59 min si
le système est considéré en entier. Ce temps de calcul
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Figure 7. Effet de la profondeur b sur les variations annuelles
du flux moyen mensuel total. a. Climat froid. b. Climat chaud.
Figure 7. Effect of building depth b on the annual variations of
the monthly heat flux. a. Cold climate. b. Hot climate.

est réduit à 6 min 19 s en utilisant la sous-structuration.
Les calculs ont été faits sur une station digital 5000/25 de
26,9 MIPS.

4.2. Étude paramétrique

La figure 7 représente les variations annuelles du
flux moyen mensuel échangé entre une cavité et le sol
pour λ = 1 W·m−1·K−1, α = 6,45·10−7 m2·s−1, h =
8,30 W·m−2·K−1 et pour différentes valeurs de la pro-
fondeurb. Les résultats de cette figure montrent que les
échanges de chaleur entre la cellule enterrée et le sol di-
minuent considérablement lorsque la profondeurb aug-
mente. Cette diminution est plus importante dans le cas
du climat froid (figure 7a) que dans celui du climat chaud
(figure 7b). En effet, plusb augmente, moins le bâtiment
est affecté par les fluctuations annuelles de la température
superficielle du sol.

On a représenté sur lafigure 8les variations annuelles
du flux moyen mensuel à travers une cavité en climat
froid (figure 8a) et en climat chaud (figure 8b), pour

Figure 8. Effet de l’isolation du toit sur les variations annuelles
du flux moyen mensuel total. a. Climat froid. b. Climat chaud.
Figure 8. Effect of ceiling insulation on the annual variations of
the monthly heat flux. a. Cold climate. b. Hot climate.

λ= 1 W·m−1·K−1 et ht = 0,41 W·m−2·K−1. Ainsi que
le montre cette figure, une forte isolation du toit réduit d’à
peu près 50 % les échanges thermiques entre le bâtiment
complètement enterré et le sol. En effet, le toit est la
paroi la plus exposée aux variations temporaires de la
température superficielle du sol. D’autres résultats, non
présentés ici, montrent que l’isolation du toit affecte non
seulement le flux échangé par ce dernier, mais aussi celui
échangé entre le mur et le sol, alors que les échanges de
chaleur entre le plancher et le sol restent insensibles à
cette isolation.

La figure 9 montre, comme il était prévisible, que
l’isolation du plancher(hp = 0,41 W·m−2·K−1) n’est
efficace que dans le cas du climat froid (figure 9a),
où le gradient de température entre l’intérieur du local
et la nappe phréatique est important ; dans le climat
chaud, en revanche, cette isolation n’a pas d’effet sur le
transfert de chaleur entre le bâtiment et le sol (figure 9b).
En effet, le gradient de température est nul dans ce
cas ; par conséquent, le flux traversant le plancher est
pratiquement négligeable.
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Figure 9. Effet de l’isolation du plancher sur les variations
annuelles du flux moyen mensuel total. a. Climat froid.
b. Climat chaud.
Figure 9. Effect of floor insulation on the annual variations of
the monthly heat flux. a. Cold climate. b. Hot climate.

Quant à l’isolation du mur(hm = 0,41 W·m−2·K−1),
elle réduit légèrement les échanges de chaleur entre la
cellule et le sol (figure 10). D’autres résultats montrent
que l’isolation du mur entraîne une augmentation du flux
de chaleur échangé entre le plancher et le sol. Cependant,
les échanges entre le toit et le sol ne sont pas affectés par
cette isolation. Ce dernier résultat peut être attribué à la
forte interaction thermique entre le toit et la surface du
sol.

Pourλ= 1,73 W·m−1·K−1 et h= 8,30 W·m−2·K−1

(ou h = 0,41 W·m−2·K−1), la figure 11donne les va-
riations annuelles du flux moyen mensuel pour deux
types de sol hétérogènes, formés chacun par un em-
pilement de trois couches dont les propriétés thermo-
physiques et géométriques sont données dans leta-
bleau I. Ces flux sont comparés à ceux obtenus dans
le cas d’un sol homogène d’humidité relative moyenne
et de propriétés thermophysiquesλ = 1 W·m−1·K−1 et
α = 6,45·10−7 m2·s−1 (type 3). On constate que les
échanges thermiques à travers la cavité sont très in-
fluencés par la nature des couches supérieures du sol.

Figure 10. Effet de l’isolation du mur sur les variations
annuelles du flux moyen mensuel total. a. Climat froid.
b. Climat chaud.
Figure 10. Effect of wall insulation on the annual variations of
the monthly heat flux. a. Cold climate. b. Hot climate.

Ceci est dû au caractère bidimensionnel très marqué des
transferts de chaleur et au gradient de température impor-
tant dans cette région.

La figure 12représente les variations annuelles du flux
moyen mensuel pour différentes valeurs de la conduc-
tivité thermiqueλ des parois de la cavité. Cette figure
montre que les échanges de chaleur entre la cavité et le
sol augmentent considérablement avecλ dans le cas du
climat froid (figure 12a). En effet, la variation du flux
total perdu par l’habitat en fonction deλ est de l’ordre
de 25 %. Mais cette augmentation reste en général faible
dans le cas du climat chaud (figure 12b).

La figure 13, obtenue pourλ = 1,73 W·m−1·K−1 et
pour différentes valeurs de l’épaisseure des différentes
parois de la cavité, montre que la variation de celle-ci
n’est appréciable que dans le cas du climat froid, où la
variation du flux total échangé entre l’habitat et le sol
en fonction dee peut atteindre 10 % (figure 13a). Dans
le climat chaud, en revanche, cette variation ne dépasse
pas 5 % (figure 13b). Ceci est essentiellement dû à la
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TABLEAU I / TABLE I
Propriétés géométriques et thermophysiques d’un sol multicouches.

Geometrical and thermophysical properties of multi-layer soil.

Types du sol λ (W·m−1·K−1) α (m2·s−1) b (m)
Type (1) 0,285 1,21·10−7 1

1 6,45·10−7 3
1,926 12,1·10−7 9

Type (2) 1,926 12,1·10−7 1
1 6,45·10−7 3

0,285 1,21·10−7 9

Figure 11. Variations annuelles du flux moyen mensuel total
pour un sol multicouches. a. h = 8,30 W·m−2·K−1. b. h =
0,41 W·m−2·K−1.
Figure 11. Annual variations of the monthly heat flux for
layered soil. a. h= 8.30 W·m−2·K−1. b. h= 0.41 W·m−2·K−1.

prédominance de l’inertie thermique du sol par rapport
à celle des parois de la cavité.

Notons finalement que, d’après les différentes fi-
gures présentées dans cette étude et qui sont obtenues
pour des bâtiments enterrés avec différentes valeurs de
λ, e, h et b, les résultats des méthodes FT, FTM et ADI
sont en très bon accord.

Figure 12. Variations annuelles du flux moyen mensuel pour
différentes conductivités. a. Climat froid. b. Climat chaud.
Figure 12. Annual variations of the monthly heat flux for
different thermal conductivity. a. Cold climate. b. Hot climate.

5. CONCLUSION

Ce travail permet de conclure que la méthode des
fonctions de transfert bidimensionnelles et la méthode
des fonctions de transfert multicouches (technique de
sous-structuration) ont été adaptées avec succès au cas
d’une cavité enterrée. En effet, les résultats obtenus
par ces méthodes sont en très bonne concordance avec
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Figure 13. Variations annuelles du flux moyen mensuel pour
différentes épaisseurs e. a. Climat froid. b. Climat chaud.
Figure 13. Annual variations of the monthly heat flux for
different thickness e. a. Cold climate. b. Hot climate.

ceux de la méthode ADI pour différentes situations ;
l’écart relatif sur les différents résultats ne dépasse
pas 2 %. L’intérêt de ces deux méthodes réside dans le fait
que leurs coefficients sont générés une fois pour toutes
et indépendamment des sollicitations thermiques appli-
quées au système. De plus, la technique des fonctions
de transfert multicouches s’avère plus performante, dans
la mesure où seules les parties modifiées (variation des
propriétés thermophysiques et/ou géométriques) sont af-
fectées par la reprise des calculs. Elle a aussi entraîné
un gain appréciable au niveau temps du calcul nécessaire
pour la génération des coefficients de la fonction de trans-
fert et a permis d’étudier le comportement thermique de
systèmes de grandes dimensions géométriques.

Concernant l’influence de la profondeur du bâtiment,
on a constaté que les échanges de chaleur avec le
sol sont d’autant plus importants que le bâtiment est
moins profond. L’étude de l’isolation des différentes
parois de la cellule enterrée nous a montré l’efficacité
de l’isolation du toit, puisqu’il est davantage exposé
aux variations temporaires de la température superficielle
du sol. Enfin, une étude paramétrique sur les effets

de la nature et de l’épaisseur des parois de la cellule
enterrée a montré que ceux-ci ne sont appréciables que
dans le cas du climat froid, où les pertes de chaleur
vers le sol augmentent considérablement en fonction
de la conductivité thermique des parois et/ou de leurs
épaisseurs. L’étude d’un sol multicouches a montré que
les échanges de chaleur à travers le bâtiment enterré sont
très influencés par la nature des couches supérieures du
sol.
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Abridged English version

Numerical simulation of heat transfer between an earth-sheltered cavity and the soil: two-dimensional transfer
functions method and subdivision

During this decade, scientists and engineers began
studying the earth-contact heat transfer in underground
buildings because it offers several environmental and en-
ergy conserving advantages as an alternative to conven-
tional structures. The high heat capacity of the soil and its
thermal insulation value greatly attenuate ambient tem-
perature variations at the surfaces of an earth-sheltered
building and somewhat reduce the total energy flows
across the envelope of such building. So, several methods
were developed. However, the majority of these methods
are based on numerical procedures such as finite differ-
ence or finite element which are time consuming. Due
to the mathematical complexity, the available analytical
solutions are limited to oversimplified models. So, this
study is made using the transfer functions method (FT)
based upon the Seem’s algorithm which has been applied
successfully to a slab-on-grade floor.

In this work, the two-dimensional transfer functions
method is applied to predict the heat transfer from an
earth-sheltered building to the surrounding soil and to
estimate the thermal performance of such a structure in
typical climates. Then, the multi-layer transfer functions
method (FTM) that permits the estimation of the heat
transfer to a layered soil is presented. This procedure
considerably reduces the calculation time required to
generate the transfer function coefficients of the studied
system. The temperature and the heat flux distributions

obtained by the FT, the FTM and the ADI methods are
in very good agreement in the different processed cases.
The temperature profiles show that, in both climates,
the heat transfer is important near the building and has
a two dimensional nature, but it decreases as thex

and/or they distances increase. The variation of the
cavity depthb shows that by increasing the depthb,
the buried building is progressively less affected by the
annual fluctuations of the soil surface temperature. By
increasing the ceiling insulation, the heat transfer through
a cavity is reduced. This insulation has no significant
effect on the heat exchange through either the walls or the
floor. Increasing wall insulation reduces heat exchange
between the building walls and the soil. It is noticed that
a decrease in wall conduction is followed by an increase
in floor heat transfer and the ceiling heat transfer is
insensitive to this insulation. This result may be attributed
to the strong thermal interaction between the ceiling and
the soil surface, therefore masking any effect of wall
insulation. Here also, the floor insulation has no effect
on either walls or ceiling heat transfer except in a cold
climate. In fact, in the hot climate, there is no temperature
gradient between the floor and the water table. Finally,
the effect of the nature and the thickness of the cavity
walls is considerable in the cold climate and the heat
across the buried building is significantly influenced by
the nature of the improved layers of soil.
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